The blueprint for the sum of the complete burden levels of n breathless beaming sources is
L_\Sigma = 10\,\cdot\,{\rm log}_{10} \left(\frac{{p_1}^2 + {p_2}^2 + \cdots + {p_n}^2}{{p_{\mathrm{ref}}}^2}\right) = 10\,\cdot\,{\rm log}_{10} \left(\left({\frac{p_1}{p_{\mathrm{ref}}}}\right)^2 + \left({\frac{p_2}{p_{\mathrm{ref}}}}\right)^2 + \cdots + \left({\frac{p_n}{p_{\mathrm{ref}}}}\right)^2\right)
From the blueprint of the complete burden akin we find
\left({\frac{p_i}{p_{\mathrm{ref}}}}\right)^2 = 10^{\frac{L_i}{10}},\qquad i=1,2,\cdots,n
This amid in the blueprint for the complete burden akin to account the sum akin shows
L_\Sigma = 10\,\cdot\,{\rm log}_{10} \left(10^{\frac{L_1}{10}} + 10^{\frac{L_2}{10}} + \cdots + 10^{\frac{L_n}{10}} \right)\,{\rm dB}
edit Examples of complete burden and complete burden levels
Sound burden in air:
L_\Sigma = 10\,\cdot\,{\rm log}_{10} \left(\frac{{p_1}^2 + {p_2}^2 + \cdots + {p_n}^2}{{p_{\mathrm{ref}}}^2}\right) = 10\,\cdot\,{\rm log}_{10} \left(\left({\frac{p_1}{p_{\mathrm{ref}}}}\right)^2 + \left({\frac{p_2}{p_{\mathrm{ref}}}}\right)^2 + \cdots + \left({\frac{p_n}{p_{\mathrm{ref}}}}\right)^2\right)
From the blueprint of the complete burden akin we find
\left({\frac{p_i}{p_{\mathrm{ref}}}}\right)^2 = 10^{\frac{L_i}{10}},\qquad i=1,2,\cdots,n
This amid in the blueprint for the complete burden akin to account the sum akin shows
L_\Sigma = 10\,\cdot\,{\rm log}_{10} \left(10^{\frac{L_1}{10}} + 10^{\frac{L_2}{10}} + \cdots + 10^{\frac{L_n}{10}} \right)\,{\rm dB}
edit Examples of complete burden and complete burden levels
Sound burden in air:
No comments:
Post a Comment